167 research outputs found

    Momentum space evolution of chiral three-nucleon forces

    Full text link
    A framework to evolve three-nucleon (3N) forces in a plane-wave basis with the Similarity Renormalization Group (SRG) is presented and applied to consistent interactions derived from chiral effective field theory at next-to-next-to-leading order (N2^2LO). We demonstrate the unitarity of the SRG transformation, show the decoupling of low and high momenta, and present the first investigation of universality in chiral 3N forces at low resolution scales. The momentum-space-evolved 3N forces are consistent and can be directly combined with the standard SRG-evolved two-nucleon (NN) interactions for ab-initio calculations of nuclear structure and reactions.Comment: 5 pages, 4 figure

    Clinical Relevance of Baseline TCP in Transcatheter Aortic Valve Replacement

    Get PDF
    AIMS: To investigate the influence of baseline thrombocytopenia (TCP) on short-term and long-term outcomes after transcatheter aortic valve replacement (TAVR). METHODS AND RESULTS: A total of 732 consecutive patients with severe, symptomatic aortic stenosis undergoing TAVR from January 2012 to December 2015 were included. Primary outcomes of interest were the relationship of baseline TCP with 30-day and 1-year all-cause mortality. Secondary outcomes of interest were procedural complications and in-hospital mortality in the same subgroups. The prevalence of TCP (defined as platelet count <150 Ă— 109/L) at baseline was 21.9%, of whom 4.0% had moderate/severe TCP (defined as platelet count <100 Ă— 109/L). Compared to no or mild TCP, moderate/severe TCP at baseline was associated with a significantly higher 30-day mortality (23.3% vs 2.3% and 3.1%, respectively; P<.001) and 1-year mortality (40.0% vs 8.3% and 13.4%, respectively; P<.001). In Cox regression analysis, moderate/severe baseline TCP was an independent predictor of 30-day and 1-year mortality (hazard ratio [HR], 13.18; 95% confidence interval [CI], 4.49-38.64; P<.001 and HR, 5.90; 95% CI, 2.68-13.02; P<.001, respectively). CONCLUSIONS: In conclusion, baseline TCP is a strong predictor of mortality in TAVR patients, possibly identifying a specific subgroup of frail patients; therefore, it should be taken into account when addressing TAVR risk

    Equation-of-state dependence of the gravitational-wave signal from the ring-down phase of neutron-star mergers

    Full text link
    Neutron-star (NS) merger simulations are conducted for 38 representative microphysical descriptions of high-density matter in order to explore the equation-of-state dependence of the postmerger ring-down phase. The formation of a deformed, oscillating, differentially rotating very massive NS is the typical outcome of the coalescence of two stars with 1.35 M⊙M_{\odot} for most candidate EoSs. The oscillations of this object imprint a pronounced peak in the gravitational-wave (GW) spectra, which is used to characterize the emission for a given model. The peak frequency of this postmerger GW signal correlates very well with the radii of nonrotating NSs, and thus allows to constrain the high-density EoS by a GW detection. In the case of 1.35-1.35 M⊙M_{\odot} mergers the peak frequency scales particularly well with the radius of a NS with 1.6 M⊙M_{\odot}, where the maximum deviation from this correlation is only 60 meters for fully microphysical EoSs which are compatible with NS observations. Combined with the uncertainty in the determination of the peak frequency it appears likely that a GW detection can measure the radius of a 1.6 M⊙M_{\odot} NS with an accuracy of about 100 to 200 meters. We also uncover relations of the peak frequency with the radii of nonrotating NSs with 1.35 M⊙M_{\odot} or 1.8 M⊙M_{\odot}, with the radius or the central energy density of the maximum-mass Tolman-Oppenheimer-Volkoff configuration, and with the pressure or sound speed at a fiducial rest-mass density of about twice nuclear saturation density. Furthermore, it is found that a determination of the dominant postmerger GW frequency can provide an upper limit for the maximum mass of nonrotating NSs. The prospects for a detection of the postmerger GW signal and a determination of the dominant GW frequency are estimated to be in the range of 0.015 to 1.2 events per year with the upcoming Advanced LIGO detector.Comment: 29 pages, 28 figures, accepted for publication in Phys. Rev.

    Flow Computations on Imprecise Terrains

    Get PDF
    We study the computation of the flow of water on imprecise terrains. We consider two approaches to modeling flow on a terrain: one where water flows across the surface of a polyhedral terrain in the direction of steepest descent, and one where water only flows along the edges of a predefined graph, for example a grid or a triangulation. In both cases each vertex has an imprecise elevation, given by an interval of possible values, while its (x,y)-coordinates are fixed. For the first model, we show that the problem of deciding whether one vertex may be contained in the watershed of another is NP-hard. In contrast, for the second model we give a simple O(n log n) time algorithm to compute the minimal and the maximal watershed of a vertex, where n is the number of edges of the graph. On a grid model, we can compute the same in O(n) time

    Chiral three-nucleon forces and bound excited states in neutron-rich oxygen isotopes

    Get PDF
    We study the spectra of neutron-rich oxygen isotopes based on chiral two- and three-nucleon interactions. First, we benchmark our many-body approach by comparing ground-state energies to coupled-cluster results for the same two-nucleon interaction, with overall good agreement. We then calculate bound excited states in 21,22,23O, focusing on the role of three-nucleon forces, in the standard sd shell and an extended sdf7/2p3/2 valence space. Chiral three-nucleon forces provide important one- and two-body contributions between valence neutrons. We find that both these contributions and an extended valence space are necessary to reproduce key signatures of novel shell evolution, such as the N = 14 magic number and the low-lying states in 21O and 23O, which are too compressed with two-nucleon interactions only. For the extended space calculations, this presents first work based on nuclear forces without adjustments. Future work is needed and open questions are discussed.Comment: 6 pages, 4 figures, published versio

    Self-consistent Green's function approaches

    Full text link
    We present the fundamental techniques and working equations of many-body Green's function theory for calculating ground state properties and the spectral strength. Green's function methods closely relate to other polynomial scaling approaches discussed in chapters 8 and 10. However, here we aim directly at a global view of the many-fermion structure. We derive the working equations for calculating many-body propagators, using both the Algebraic Diagrammatic Construction technique and the self-consistent formalism at finite temperature. Their implementation is discussed, as well as the inclusion of three-nucleon interactions. The self-consistency feature is essential to guarantee thermodynamic consistency. The pairing and neutron matter models introduced in previous chapters are solved and compared with the other methods in this book.Comment: 58 pages, 14 figures, Submitted to Lect. Notes Phys., "An advanced course in computational nuclear physics: Bridging the scales from quarks to neutron stars", M. Hjorth-Jensen, M. P. Lombardo, U. van Kolck, Editor

    Dense matter with eXTP

    Full text link
    In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry (eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be replicated in a terrestrial laboratory. The tightest statistical constraints on the dense matter equation of state will come from pulse profile modelling of accretion-powered pulsars, burst oscillation sources, and rotation-powered pulsars. Additional constraints will derive from spin measurements, burst spectra, and properties of the accretion flows in the vicinity of the neutron star. Under development by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Science, the eXTP mission is expected to be launched in the mid 2020s.Comment: Accepted for publication on Sci. China Phys. Mech. Astron. (2019

    Flow computations on imprecise terrains

    No full text
    We study water flow computation on imprecise terrains. We consider two approaches to modeling flow on a terrain: one where water flows across the surface of a polyhedral terrain in the direction of steepest descent, and one where water only flows along the edges of a predefined graph, for example a grid or a triangulation. In both cases each vertex has an imprecise elevation, given by an interval of possible values, while its (x, y)-coordinates are fixed. For the first model, we show that the problem of deciding whether one vertex may be contained in the watershed of another is NP-hard. In contrast, for the second model we give a simple O(n log n) time algorithm to compute the minimal and the maximal watershed of a vertex, where n is the number of edges of the graph. On a grid model, we can compute the same in O(n) time.Peer ReviewedPostprint (published version

    Constraints on the braneworld from compact stars

    Get PDF
    According to the braneworld idea, ordinary matter is confined on a three-dimensional space (brane) that is embedded in a higher-dimensional space-time where gravity propagates. In this work, after reviewing the limits coming from general relativity, finiteness of pressure and causality on the brane, we derive observational constraints on the braneworld parameters from the existence of stable compact stars. The analysis is carried out by solving numerically the brane-modified Tolman–Oppenheimer–Volkoff equations, using different representative equations of state to describe matter in the star interior. The cases of normal dense matter, pure quark matter and hybrid matter are considered.info:eu-repo/semantics/publishedVersio
    • …
    corecore